Expandable Rows
Display hierarchical data with expandable/collapsible rows.
Basic Usage
Data Structure
Include sub-rows under the subRows key (or custom key via sub_rows_key):
data = pd.DataFrame([
{
"Category": "Electronics",
"Sales": 120000,
"subRows": [
{"Category": "TV", "Sales": 80000},
{"Category": "Phone", "Sales": 40000}
]
},
{
"Category": "Clothing",
"Sales": 50000,
"subRows": [
{"Category": "Men's", "Sales": 20000},
{"Category": "Women's", "Sales": 30000}
]
}
])
Custom Sub-Rows Key
data = pd.DataFrame([
{
"name": "Parent",
"children": [ # Custom key
{"name": "Child 1"},
{"name": "Child 2"}
]
}
])
advanced_dataframe(
data=data,
expandable=True,
sub_rows_key="children" # Specify custom key
)
Nested Hierarchies
Supports up to 5 levels of nesting (recommended maximum):
data = pd.DataFrame([
{
"Category": "Food",
"subRows": [
{
"Category": "Fruits",
"subRows": [
{"Category": "Apple"},
{"Category": "Orange"}
]
},
{
"Category": "Vegetables",
"subRows": [
{"Category": "Carrot"},
{"Category": "Tomato"}
]
}
]
}
])
Deep Hierarchies
Hierarchies deeper than 5 levels will show a warning. Deep nesting may impact usability and performance.
With Row Selection
Expandable rows work with row selection: